skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Zhi-Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2. 
    more » « less
  2. Free, publicly-accessible full text available September 10, 2024
  3. Quantum annealing (QA) is a promising optimization technique used to find global optimal solution of a combinatorial optimization problem by leveraging quantum fluctuations. In QA, the problem being solved is mapped onto the quantum processing unit (QPU) composed of qubits through a procedure called minor-embedding. The qubits are connected by a network of couplers, which determine the strength of the interactions between the qubits. The strength of the couplers that connect qubits within a chain is often referred to as the chain strength. The appropriate balance of chain strength is equally imperative in enabling the qubits to interact with one another in a way that is strong enough to obtain the optimal solution, but not excessively strong so as not to bias the original problem terms. To this end, we address the problem of identifying the optimal chain strength through the utilization of Path Integral Monte Carlo (PIMC) quantum simulation algorithm. The results indicate that our judicious choice of chain strength parameter facilitates enhancements in quantum annealer performance and solution quality, thereby paving the way for QA to compete with, or potentially outperform, classical optimization algorithms. 
    more » « less
    Free, publicly-accessible full text available September 17, 2024
  4. Support for connected and autonomous vehicles (CAVs) is a major use case of 5G networks. Due to their large from factors, CAVs can be equipped with multiple radio antennas, cameras, LiDAR and other sensors. In other words, they are "giant" mobile integrated communications and sensing devices. The data collected can not only facilitate edge-assisted autonomous driving, but also enable intelligent radio resource allocation by cellular networks. In this paper we conduct an initial study to assess the feasibility of delivering multi-modal sensory data collected by vehicles over emerging commercial 5G networks. We carried out an "in-the-wild" drive test and data collection campaign between Minneapolis and Chicago using a vehicle equipped with a 360° camera, a LiDAR device, multiple smart phones and a professional 5G network measurement tool. Using the collected multi-modal data, we conduct trace-driven experiments in a local streaming testbed to analyze the requirements and performance of streaming multi-modal sensor data over existing 4G/5G networks. We reveal several notable findings and point out future research directions. 
    more » « less
  5. Free, publicly-accessible full text available April 27, 2024